NRT: Rivers, Watersheds, Communities: Training an Innovative, Cross-Sector Workforce for Equitable, Multi-Scale Decision-Making Towards Human and Ecosystem Health
Rivers provide food and clean water, transportation pathways, energy production, travel corridors for organisms, and cultural and spiritual values for people. Despite their importance, many river systems are highly contaminated with toxins, sediment, nutrients, and metals. Contamination originates from many sources, including industrial activity, pesticide runoff, wastewater treatment discharges, and urban runoff. This contamination is considered an invisible water crisis posing serious risks for wildlife and human health in many places. As this crisis escalates in watersheds, it impacts the communities living in these watersheds adversely. Therefore, it becomes important to train a new workforce capable of integrating scientific information, public policy, and the knowledge and concerns of affected social groups, including Native American tribes, for effective management of the resources of river systems. This National Science Foundation Research Traineeship (NRT) award to the Washington State University will train graduate students from across the United States how to study challenges in rivers, watersheds, and communities as they relate to human and ecosystem health and will use the Columbia River Basin as the study site. The project anticipates training 65 master’s and doctoral degree students, including 25 funded trainees, from civil and environmental engineering, biological sciences, environmental and natural resources sciences, environmental sociology, and political science. Central to the traineeship is developing a community engagement approach that begins with the recognition that communities face diverse and complex issues and leverages knowledge of native communities to identify key problems and implement equitable solutions. Students participating in this program will engage with communities to co-produce solutions and opportunities to the invisible water crisis through scientific training, research, and problem-solving.